博客
关于我
faster rcnn 训练与测试
阅读量:310 次
发布时间:2019-03-03

本文共 1885 字,大约阅读时间需要 6 分钟。

Faster R-CNN 训练

在深度学习领域,Faster R-CNN 是一种高效的目标检测算法,因其在速度和精度上均表现优异,被广泛应用于计算机视觉任务中。本文将详细介绍 Faster R-CNN 的训练过程及其相关优化策略。

1. 训练脚本

训练脚本位于 ./experiments/scripts/faster_rcnn_alt_opt.sh,用户可通过以下命令运行:

./experiments/scripts/faster_rcnn_alt_opt.sh GPU_ID NET DATASET [其他选项]

其中:

  • GPU_ID 表示使用的 GPU 编号
  • NET 是网络结构名称
  • DATASET 是数据集名称,如 Pascal VOC

2. 数据集配置

支持 Pascal VOC 和 COCO 数据集,Pascal VOC 的训练和测试集分别为 voc_2007_trainvalvoc_2007_test。训练时默认使用 pascal_voc 数据集。

3. hyper参数设置

训练参数包括:

  • ITERS:默认为 40000 次训练
  • TRAIN.SCALES:默认为 [400, 500, 600, 700]
  • PT_DIR:模型存储路径

4. 训练脚本执行

脚本执行步骤:

  • 解析输入参数
  • 设置训练环境
  • 执行训练任务
  • 记录训练日志
  • 提取最终模型
  • 5. 日志输出

    训练日志输出至文件 experiments/logs/faster_rcnn_alt_opt_[NET]_[EXTRA_ARGS].txt,包含训练过程信息和最终结果。例如:

    time ./tools/train_faster_rcnn_alt_opt.py --gpu ${GPU_ID} \--net_name ${NET} \--weights data/imagenet_models/${NET}.v2.caffemodel \--imdb ${TRAIN_IMDB} \--cfg experiments/cfgs/faster_rcnn_alt_opt.yml \${EXTRA_ARGS}

    6. 测试结果

    测试时使用 ./tools/test_net.py,输入参数包括:

    • GPU 编号
    • 模型路径
    • 测试集路径
    • 模型名称

    测试结果示例如下:

    ./tools/test_net.py --gpu ${GPU_ID} \--def models/${PT_DIR}/${NET}/faster_rcnn_test.pt \--net ${NET_FINAL} \--imdb ${TEST_IMDB} \--cfg experiments/cfgs/faster_rcNN_alt_opt.yml \${EXTRA_ARGS}

    7. 模型评估

    训练完成后,模型文件位于 models/pascal_voc/[NET]/faster_rcnn_test.pt。评估结果通过 ./tools/reval.py --matlab 命令验证,确保结果与 MATLAB 工作站一致。

    8. 性能指标

    训练完成后,日志文件 experiments/logs/faster_rcnn_alt_opt_[NET]_[EXTRA_ARGS].txt 包含以下指标:

    • 平均精度(AP)
    • 检测速度(FPS)
    • 内存使用(MB)

    例如:

    Reading annotation for 4801/4952Reading annotation for 4901/4952Saving cached annotations to /home//py-faster-rcnn/data/VOCdevkit2007/annotations_cache/annots.pklAP for aeroplane = 0.6104AP for bicycle = 0.7060...Mean AP = 0.5896

    9. 模型测试

    通过 ./tools/demo.py 进行模型测试,输入参数为:

    ./tools/demo.py --net zf

    10. 工具说明

    • train_faster_rcnn_alt_opt.py:负责模型训练
    • test_net.py:用于测试和评估模型性能
    • reval.py:验证模型结果与 MATLAB 工作站一致性

    Faster R-CNN 通过其高效的 Region Proposal Network (RPN) 结构和Anchor Box 预测机制,在目标检测任务中展现出卓越的性能。

    转载地址:http://pasm.baihongyu.com/

    你可能感兴趣的文章
    nginx 配置~~~本身就是一个静态资源的服务器
    查看>>
    Nginx 配置服务器文件上传与下载
    查看>>
    Nginx 配置清单(一篇够用)
    查看>>
    Nginx 配置解析:从基础到高级应用指南
    查看>>
    Nginx 集成Zipkin服务链路追踪
    查看>>
    nginx 集群配置方式 静态文件处理
    查看>>
    Nginx+Django-Python+BPMN-JS的整合工作流实战项目
    查看>>
    Nginx+Keepalived+LVS集群实战
    查看>>
    Nginx+Keepalived实现简单版高可用主备切换
    查看>>
    Nginx+Lua 开发高性能Web应用实战
    查看>>
    nginx+mysql+redis+mongdb+rabbitmq 自动化部署脚本
    查看>>
    nginx+php的搭建
    查看>>
    nginx+tomcat+memcached
    查看>>
    nginx+tomcat单个域名及多个域名配置
    查看>>
    Nginx+Tomcat实现动静分离
    查看>>
    nginx+Tomcat性能监控
    查看>>
    nginx+uwsgi+django
    查看>>
    nginx+vsftp搭建图片服务器
    查看>>
    Nginx-http-flv-module流媒体服务器搭建+模拟推流+flv.js在前端html和Vue中播放HTTP-FLV视频流
    查看>>
    nginx-vts + prometheus 监控nginx
    查看>>