博客
关于我
faster rcnn 训练与测试
阅读量:309 次
发布时间:2019-03-03

本文共 1885 字,大约阅读时间需要 6 分钟。

Faster R-CNN 训练

在深度学习领域,Faster R-CNN 是一种高效的目标检测算法,因其在速度和精度上均表现优异,被广泛应用于计算机视觉任务中。本文将详细介绍 Faster R-CNN 的训练过程及其相关优化策略。

1. 训练脚本

训练脚本位于 ./experiments/scripts/faster_rcnn_alt_opt.sh,用户可通过以下命令运行:

./experiments/scripts/faster_rcnn_alt_opt.sh GPU_ID NET DATASET [其他选项]

其中:

  • GPU_ID 表示使用的 GPU 编号
  • NET 是网络结构名称
  • DATASET 是数据集名称,如 Pascal VOC

2. 数据集配置

支持 Pascal VOC 和 COCO 数据集,Pascal VOC 的训练和测试集分别为 voc_2007_trainvalvoc_2007_test。训练时默认使用 pascal_voc 数据集。

3. hyper参数设置

训练参数包括:

  • ITERS:默认为 40000 次训练
  • TRAIN.SCALES:默认为 [400, 500, 600, 700]
  • PT_DIR:模型存储路径

4. 训练脚本执行

脚本执行步骤:

  • 解析输入参数
  • 设置训练环境
  • 执行训练任务
  • 记录训练日志
  • 提取最终模型
  • 5. 日志输出

    训练日志输出至文件 experiments/logs/faster_rcnn_alt_opt_[NET]_[EXTRA_ARGS].txt,包含训练过程信息和最终结果。例如:

    time ./tools/train_faster_rcnn_alt_opt.py --gpu ${GPU_ID} \--net_name ${NET} \--weights data/imagenet_models/${NET}.v2.caffemodel \--imdb ${TRAIN_IMDB} \--cfg experiments/cfgs/faster_rcnn_alt_opt.yml \${EXTRA_ARGS}

    6. 测试结果

    测试时使用 ./tools/test_net.py,输入参数包括:

    • GPU 编号
    • 模型路径
    • 测试集路径
    • 模型名称

    测试结果示例如下:

    ./tools/test_net.py --gpu ${GPU_ID} \--def models/${PT_DIR}/${NET}/faster_rcnn_test.pt \--net ${NET_FINAL} \--imdb ${TEST_IMDB} \--cfg experiments/cfgs/faster_rcNN_alt_opt.yml \${EXTRA_ARGS}

    7. 模型评估

    训练完成后,模型文件位于 models/pascal_voc/[NET]/faster_rcnn_test.pt。评估结果通过 ./tools/reval.py --matlab 命令验证,确保结果与 MATLAB 工作站一致。

    8. 性能指标

    训练完成后,日志文件 experiments/logs/faster_rcnn_alt_opt_[NET]_[EXTRA_ARGS].txt 包含以下指标:

    • 平均精度(AP)
    • 检测速度(FPS)
    • 内存使用(MB)

    例如:

    Reading annotation for 4801/4952Reading annotation for 4901/4952Saving cached annotations to /home//py-faster-rcnn/data/VOCdevkit2007/annotations_cache/annots.pklAP for aeroplane = 0.6104AP for bicycle = 0.7060...Mean AP = 0.5896

    9. 模型测试

    通过 ./tools/demo.py 进行模型测试,输入参数为:

    ./tools/demo.py --net zf

    10. 工具说明

    • train_faster_rcnn_alt_opt.py:负责模型训练
    • test_net.py:用于测试和评估模型性能
    • reval.py:验证模型结果与 MATLAB 工作站一致性

    Faster R-CNN 通过其高效的 Region Proposal Network (RPN) 结构和Anchor Box 预测机制,在目标检测任务中展现出卓越的性能。

    转载地址:http://pasm.baihongyu.com/

    你可能感兴趣的文章
    MariaDB的简单使用
    查看>>
    MaterialForm对tab页进行隐藏
    查看>>
    Member var and Static var.
    查看>>
    memcached高速缓存学习笔记001---memcached介绍和安装以及基本使用
    查看>>
    memcached高速缓存学习笔记003---利用JAVA程序操作memcached crud操作
    查看>>
    Memcached:Node.js 高性能缓存解决方案
    查看>>
    memcache、redis原理对比
    查看>>
    memset初始化高维数组为-1/0
    查看>>
    Metasploit CGI网关接口渗透测试实战
    查看>>
    Metasploit Web服务器渗透测试实战
    查看>>
    Moment.js常见用法总结
    查看>>
    MongoDB出现Error parsing command line: unrecognised option ‘--fork‘ 的解决方法
    查看>>
    mxGraph改变图形大小重置overlay位置
    查看>>
    MongoDB学习笔记(8)--索引及优化索引
    查看>>
    MQTT工作笔记0009---订阅主题和订阅确认
    查看>>
    ms sql server 2008 sp2更新异常
    查看>>
    MS UC 2013-0-Prepare Tool
    查看>>
    msbuild发布web应用程序
    查看>>
    MSB与LSB
    查看>>
    MSCRM调用外部JS文件
    查看>>